Answer of even number problems

Chapter 1
6. Domain of $g(x)$ is $[-2,2]$

Range of $g(x)$ is $[0,4]$
8. Domain of $F(t)$ is $(-\infty, \infty)$

Range of $F(t)$ is $[2,4]$
12.

14.

16

Chapter 2
6. The limit is $-\infty$
10. The limit is -1
12. The limit is $-\frac{5}{54}$
26. The domain of $g(x)$ is $(-\infty,-3] \cup[3, \infty)$

Since $\sqrt{x^{2}-9}$ is continuous and $x^{2}-2 \neq 0$ in this set, the quotient function is continuous on its domain.

Chapter 3

2. $x=-4$ discontinuous.
$\mathrm{x}=-1 \quad$ cluster point
$x=2 \quad$ The function tends to infinite
$\mathrm{x}=5 \quad$ The tangent line is vertical
3. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{-7}{(3+x+h)(3+x)}=\frac{-7}{(3+x)^{2}}$
4. $y^{\prime}=-\sin (\tan x) \sec ^{2} x$
5. $y^{\prime}=\frac{4 x+5}{(2 x+1)^{\frac{3}{2}}}$
6. $y^{\prime}=\sqrt{7}\left(x+\frac{1}{x^{2}}\right)^{\sqrt{7}-1}\left(1-\frac{1}{2 x^{3}}\right)$
7. $y^{\prime}=\frac{\cos \sqrt{x}}{4 \sqrt{x \sin \sqrt{x}}}$
8. $y^{\prime}=\frac{\tan y}{1-x \sec ^{2} y}$
9. $y^{\prime}=\frac{-(x+2 y)}{2 x+y}$
10. $\frac{8}{9 \pi} \mathrm{~cm} / \mathrm{s}$
11. $\frac{10}{\sqrt{26}} \mathrm{~m} / \mathrm{s}$
82.(a) $y=-\frac{3}{4} x+\frac{25}{4}$
(b) 5.5

(c) $2.24<x<3.36$
12. The limit is $-\frac{\sqrt{3}}{2}$
